BITCOINS GRATIS

miércoles, 15 de enero de 2014

El sistema métrico decimal

Sistema Métrico decimal

De acuerdo con el sistema métrico decimal, cuya unidad fundamental es el metro, éste representa la diezmillonésima parte del cuadrante del meridiano terrestre. cuando previas investigaciones, se tomo este acuerdo internacional se  mando a construir una barra de platino irradiado (10% de iridio y 90% de platino) representando el metro y se deposito (1889) en la oficina internacional de pesas y medidas, en Paris.

Estudios posteriores indicaron que la medida es menor en 0.2 milímetros a la cifra indicada. En 1960 la Conferencia Internacional de pesas y medidas definió el metro en términos de longitud de las ondas luminosas emitidas por el isótopo Kripton 86. Sin embargo, el metro de platino seguirá aplicándose como el patrón de ciertas clases  medidas (territoriales, industriales, comerciales, etc.) al nuevo sistema se le llamo Sistema Internacional de medidas (Sistema S.I)



El Sistema Internacional de Unidades está formado hoy por dos clases de unidades: unidades básicas o fundamentales yunidades derivadas.
Unidades básicas
El Sistema Internacional de Unidades consta de siete unidades básicas, también denominadas unidades fundamentales. De la  combinación de las siete unidades fundamentales se obtienen todas las unidades derivadas.
Magnitud física fundamental
Unidad básica o fundamental
Símbolo
Observaciones
Longitud
metro
m
Se define en función de la velocidad de la luz
Masa
kilogramo
kg
No se define como 1.000 gramos
Tiempo
segundo
s
Se define en función del tiempo atómico
Intensidad de corriente eléctrica
amperio o ampere
A
Se define a partir del campo eléctrico
Temperatura
kelvin
K
Se define a partir de la temperatura termodinámica del punto triple del agua.
Cantidad de sustancia
mol
mol
Véase también Número de Avogadro
Ver: PSU: Química, Pregunta 01_2005
Intensidad luminosa
candela
cd
 

Las unidades básicas tienen múltiplos y submúltiplos, que se expresan mediante prefijos. Así, por ejemplo, la expresión kilo indica "mil" y, por lo tanto, 1 km son 1.000 m, del mismo modo que mili indica "milésima" y, por ejemplo, 1 mA es 0,001 A.
Definiciones para las unidades básicas
Unidad de longitud: metro (m)
El metro es la longitud de trayecto recorrido en el vacío por la luz durante un tiempo de 1/299.792.458 de segundo.
Unidad de masa
El kilogramo (kg) es igual a la masa del prototipo internacional del kilogramo
Unidad de tiempo
El segundo (s) es la duración de 9.192.631.770 periodos de la radiación correspondiente a la transición entre los dos niveles hiperfinos del estado fundamental del átomo de cesio 133.
Unidad de intensidad de corriente eléctrica
El ampere (A) es la intensidad de una corriente constante que manteniéndose en dos conductores paralelos, rectilíneos, de longitud infinita, de sección circular despreciable y situados a una distancia de un metro uno de otro en el vacío, produciría una fuerza igual a 2.10-7 newton por metro de longitud.
Unidad de temperaturatermodinámica
El kelvin (K), unidad de temperatura termodinámica, es la fracción 1/273,16 de la temperatura termodinámica del punto triple del agua.
Observación: Además de la temperatura termodinámica (símbolo T) expresada en kelvins, se utiliza también la temperatura Celsius (símbolo t) definida por la ecuación  t = T - T0 donde T0 = 273,15 K por definición.
Unidad de cantidad de sustancia
El mol (mol) es la cantidad de sustancia de un sistema que contiene tantas entidades elementales como átomos hay en 0,012 kilogramos de carbono 12.
Cuando se emplee el mol, deben especificarse las unidades elementales, que pueden ser átomos, moléculas, iones, electrones u otras partículas o grupos especificados de tales partículas.
Unidad de intensidad luminosa
La candela (cd) es la unidad luminosa, en una dirección dada, de una fuente que emite una radiación monocromática de frecuencia 540 1012 hertz y cuya intensidad energética en dicha dirección es 1/683 watt por estereorradián.

 Además de las unidades básicas hay dos unidades suplementarias:
Unidades suplementarias del sistema internacional (SI)
Magnitud
Unidad
Nombre
Símbolo
Ángulo plano
radián
rad
Ángulo sólido
estereorradián
sr

Unidades derivadas expresadas a partir de unidades básicas y suplementarias
Con esta denominación se hace referencia a las unidades utilizadas para expresar magnitudes físicas que son resultado de combinar magnitudes físicas tomadas como fundamentales.
Magnitud
Nombre
Símbolo
Superficie
metro cuadrado
m2
Volumen
metro cúbico
m3
Velocidad
metro por segundo
m/s
Aceleración
metro por segundo cuadrado
m/s2
Masa en volumen
kilogramo por metro cúbico
kg/m3
Velocidad angular
radián por segundo
rad/s
Aceleración angular
radián por segundo cuadrado
rad/s2

Definiciones para algunas unidades derivadas

Unidad de velocidad
Un metro por segundo (m/s o m s-1) es la velocidad de un cuerpo que, con movimiento uniforme, recorre, una longitud de un metro en 1 segundo
Unidad de aceleración
Un metro por segundo cuadrado (m/s2 o m s-2) es la aceleración de un cuerpo, animado de movimiento uniformemente variado, cuya velocidad varía cada segundo, 1 m/s.
Unidad de velocidad angular
Un radián por segundo (rad/s o rad s-1) es la velocidad de un cuerpo que, con una rotación uniforme alrededor de un eje fijo, gira en 1 segundo, 1 radián.
Unidad de aceleración angular
Un radián por segundo cuadrado (rad/s2 o rad s-2) es la aceleración angular de un cuerpo animado de una rotación uniformemente variada alrededor de un eje fijo, cuya velocidad angular, varía 1 radián por segundo, en 1 segundo.

Unidades SI derivadas con nombres y símbolos especiales
Magnitud
Nombre
Símbolo
Expresión en otras unidades SI
Expresión en unidades SI básicas
Frecuencia
hertz
Hz
 
s-1
Fuerza
newton
N
 
m kg s-2
Presión
pascal
Pa
N m-2
m1 kg s-2
Energía, trabajo,
cantidad de calor
joule
J
N m
m2 kg s-2
Potencia
watt
W
J s-1
m2 kg s-3
Cantidad de electricidad
carga eléctrica
coulomb
C
 
s A
Potencial eléctrico
fuerza electromotriz
volt
V
W A-1
m2 kg s-3 A-1
Resistencia eléctrica
ohm
W
V A-1
m2 kg s-3 A-2
Capacidad eléctrica
farad
F
C V-1
m-2 kg-1 s4 A2
Flujo magnético
weber
Wb
V s
m2 kg s-2 A-1
Inducción magnética
tesla
T
Wb m2
kg s-2 A1
Inductancia
henry
H
Wb A-1
mkg s-2 A-2

Definiciones para las unidades con nombres especiales
Unidad de frecuencia
Un hertz (Hz) es la frecuencia de un fenómeno periódico cuyo periodo es 1 segundo.
Unidad de fuerza
Un newton (N) es la fuerza que, aplicada a un cuerpo que tiene una masa de 1 kilogramo, le comunica una aceleración de 1 metro por segundo al cuadrado.
 Unidad de presión
Un pascal (Pa) es la presión uniforme que, actuando sobre una superficie plana de 1 metro cuadrado, ejerce perpendicularmente a esta superficie una fuerza total de 1 newton.
Unidad de energía, trabajo, cantidad de calor
Un joule (J) es el trabajo producido por una fuerza de 1 newton, cuyo punto de aplicación se desplaza 1 metro en la dirección de la fuerza.
Unidad de potencia, flujo radiante
Un watt (W) es la potencia que da lugar a una producción de energía igual a 1 joule por segundo.
Unidad de cantidad de electricidad,carga eléctrica
Un coulomb (C) es la cantidad de electricidad transportada en 1 segundo por una corriente de intensidad 1 ampere.
Unidad de potencial eléctrico, fuerza electromotriz
Un volt (V) es la diferencia de potencial eléctrico que existe entre dos puntos de un hilo conductor que transporta una corriente de intensidad constante de 1 ampere cuando la potencia disipada entre estos puntos es igual a 1 watt.
Unidad de resistencia eléctrica
Un ohm (W) es la resistencia eléctrica que existe entre dos puntos de un conductor cuando una diferencia de potencial constante de 1 volt aplicada entre estos dos puntos produce, en dicho conductor, una corriente de intensidad 1 ampere, cuando no haya fuerza electromotriz en el conductor.
Unidad de capacidad eléctrica
Un farad (F) es la capacidad de un condensador eléctrico que entre sus armaduras aparece una diferencia de potencial eléctrico de 1 volt, cuando está cargado con una cantidad de electricidad igual a 1 coulomb.
Unidad de flujo magnético
Un weber (Wb) es el flujo magnético que, al atravesar un circuito de una sola espira produce en la misma una fuerza electromotriz de 1 volt si se anula dicho flujo en un segundo por decaimiento uniforme.
Unidad de inducción magnética
Una tesla (T) es la inducción magnética uniforme que, repartida normalmente sobre una superficie de 1 metro cuadrado, produce a través de esta superficie un flujo magnético total de 1 weber.
Unidad de inductancia
Un henry (H) es la inductancia eléctrica de un circuito cerrado en el que se produce una fuerza electromotriz de 1 volt, cuando la corriente eléctrica que recorre el circuito varía uniformemente a razón de un ampere por segundo.

Como dijimos, los símbolos de las unidades pueden verse afectados de prefijos que actúan como múltiplos y submúltiplos decimales. Estos prefijos se colocan delante del símbolo de la unidad correspondiente sin espacio intermedio.
El conjunto del símbolo más el prefijo equivale a una nueva unidad que puede combinarse con otras unidades y elevarse a cualquier exponente (positivo o negativo). Los prefijos decimales se muestran en las tablas siguientes.
Múltiplos decimales
Prefijo
Símbolo
Factor
deca
da
101
hecto
h
102
kilo
k
103
mega
M
106
giga
G
109
tera
T
1012
peta
P
1015
exa
E
1018
zetta
Z
1021
yotta
Y
1024
Submúltiplos decimales
Prefijo
Símbolo
Factor
deci
d
10-1
centi
c
10-2
mili
m
10-3
micro
μ
10-6
nano
n
10-9
pico
p
10-12
femto
f
10-15
atto
a
10-18
zepto
z
10-21
yocto
y
10-24
   

Unidades en uso junto con el SI

El Comité Internacional (1969) ha reconocido que los usuarios podían tener necesidad de utilizar las unidades SI en asociación con algunas unidades que no pertenecen al Sistema Internacional pero que juegan un papel importante y que son ampliamente extendidas.
Estas unidades, que fueron clasificadas en tres categorías: las unidades en uso junto con el SI; las unidades mantenidas temporalmente; las unidades a desaconsejar.
Reconsiderando esta clasificación, el Comité Internacional (1996) aprobó una nueva clasificación de las unidades de fuera del SI que pueden ser utilizadas con el SI: las unidades de uso con el SI; las unidades en uso junto con el SI cuyo valor es obtenido experimentalmente; otras unidades de uso junto con el SI, correspondiente a necesidades específicas.

La lista de las unidades fuera del SI en uso junto con el SI, que incluimos abajo, comprende unidades empleadas cotidianamente, en particular las unidades usuales de tiempo y de ángulo, así como otras unidades cada vez más importantes desde el punto de vista técnico.

Unidades fuera del Sistema Internacional en uso con el Sistema Internacional
Nombre
Símbolo
Valor en unidad SI
minuto
min
1 min = 60 s
hora
h
1 h = 60 min = 3.600 s
día
d
1 d = 24 h = 86.400 s
grado
º
1º = (π/180) rad
minuto
'
1' = (1/60)º = (π/10.800) rad
segundo
''
1'' = (1/60)' = (π/648.000) rad
litro
l, L
1 l = 1 dm3 = 103 m3
tonelada
t
1 t = 103 kg
belio
B
1 B = (1/2) ln 10 (Np)
neper
Np
1 Np = 1

Reglas de escrituras de nombres y símbolos de las unidades SI
Principios generales

Los principios generales concernientes a la escritura de los símbolos de las unidades y de los nombres fueron primero propuestos en 1948, siendo posteriormente adoptados y puestos en formato por la ISO/TC 12 (ISO 31, Magnitudes y unidades).

Símbolos de las unidades SI

Los símbolos de las unidades SI (y muchos otros símbolos de las unidades fuera del SI) deben ser escritos según las reglas siguientes:

• Los símbolos de las unidades se imprimen en caracteres romanos (rectos). En general los símbolos de las unidades se escriben en minúsculas, pero, si el nombre de la unidad deriva de un nombre propio, la primera letra del símbolo es mayúscula. El nombre de la unidad propiamente dicha comienza siempre por una minúscula, salvo si se trata de la primera palabra de una frase o del nombre «grado Celsius».

• Los símbolos de las unidades quedan invariables en plural.

• Los símbolos de las unidades no están seguidos por un punto, salvo si se encuentran situados al final de una frase, el punto releva en este caso de la puntuación habitual.
Expresión algebraica de los símbolos de las unidades SI
De acuerdo con los principios generales adoptados por la ISO/TC 12 (ISO 31), el Comité Internacional recomienda que las expresiones algebraicas que comprenden símbolos de unidades SI deben expresarse bajo una forma normalizada.

• Cuando una unidad derivada está formada multiplicando dos o varias unidades, está expresada con la ayuda de símbolos de unidades separados por puntos a media altura o por un espacio.

Por ejemplo: N • m o N m.

• Cuando una unidad derivada está formada dividiendo una unidad por otra, se puede utilizar una barra inclinada (/), una barra horizontal o bien exponentes negativos.

Por ejemplo: m/s o m • s–1.

• No se debe nunca hacer seguir sobre una misma línea una barra inclinada de un signo de multiplicación o de división, al menos que paréntesis sean añadidos a fin de evitar toda ambigüedad.

Por ejemplo:
m/s2 o m • s–2 pero no m/s/s

m • kg/(s3 • A) o m • kg • s–3 • A–1 pero no m • kg/s3/A ni m • kg/s3 • A

Reglas de empleo de los prefijos SI

De acuerdo con los principios generales adoptados por la ISO (ISO 31), el Comité Internacional recomienda que se observen las reglas siguientes en el empleo de los prefijos SI:

• Los símbolos de los prefijos se imprimen en caracteres romanos (rectos), sin espacio entre el símbolo del prefijo y el símbolo de la unidad.

• El conjunto formado por el símbolo de un prefijo junto al símbolo de una unidad constituye un nuevo símbolo inseparable (símbolo de un múltiplo o submúltiplo de esta unidad) que se puede elevar a una potencia positiva o negativa y combinar con otros símbolos de unidades para formar símbolos de unidades compuestas.

Por ejemplo:
1 cm3= (102 m)3 = 10–6 m3

µs–1 = (10–6 s)–1 = 106 s–1

1 V/cm = (1 V)/(10–2 m) = 102 V/m

1 cm–1 = (10–2 m)–1 = 102 m–1.
• No se deben utilizar los prefijos compuestos, es decir formados por la yuxtaposición de varios prefijos.

Por ejemplo: 1 nm pero no 1 mµm.
• Un prefijo no debe ser nunca empleado solo.

Por ejemplo: 106/m3 pero no M/m3.



No hay comentarios.:

Publicar un comentario